本文共 1385 字,大约阅读时间需要 4 分钟。
在LibTorch中,计算损失函数的实现相对简单直接。以下是一个典型的使用示例:
import torchloss = torch.nn.NLLLoss()prediction = net(prediction_data)loss_value = loss(prediction, batch_target)
以下是一个基于LibTorch的完整网络架构实现,结合MNIST手写数字分类任务:
import torchimport torch.nn as nnimport torch.optim as optimclass Net(nn.Module): def __init__(self): super(Net, self).__init__() self.fc1 = nn.Linear(784, 64) self.fc2 = nn.Linear(64, 32) self.fc3 = nn.Linear(32, 10) def forward(self, x): x = self.relu(self.fc1(x.view(x.size(0), 784))) x = torch.nn.functional.dropout(x, 0.5, training=True) x = self.relu(self.fc2(x)) x = torch.nn.functional.log_softmax(self.fc3(x), dim=1) return xnet = Net()criterion = nn.NLLLoss()optimizer = optim.SGD(net.parameters(), lr=0.01)for epoch in range(10): for batch in data_loader: optimizer.zero_grad() output = net(batch.data) loss = criterion(output, batch.target) loss.backward() optimizer.step() if batch_idx % 100 == 0: print(f"Epoch: {epoch+1}, Batch: {batch_idx}, Loss: {loss.item()}")
通过PyTorch的高效接口,可以将训练好的模型部署到实际应用中。由于LibTorch基于PyTorch,模型可以方便地导出并在移动设备上运行。
转载地址:http://iwwfk.baihongyu.com/